Welcome to visit GeoDetector Website !

Last updated on 15 December, 2017

 

GeoDetector Software

地理探测器软件

Contents

Introduction

How to Use This Software

Output of GeoDetector

Download of GeoDetector Software and Example Datasets

Citation

Bibliography of GeoDetector

Developers and Contact Information

Acknowledgement

 

Introduction

Spatial stratified heterogeneity, the phenomena that within strata are more similar than between strata, such as landuse types and climate zones, is a window for humans to understand the nature since Aristotle time. Geographical detector is a new tool to measure and to find spatial stratified heterogeneity of a variable Y (Fig. 1); and to test the association between two variables Y and X according to the consistency of their spatial distributions (Fig. 1). All of the purposes are implemented by the geographical detector q-statistic:

 

 

where  stands for the variance of Y; N is the number of units of the population Y; the population Y is composed of L strata (h = 1, 2, …, L). The strata of Y are either a partition of Y by itself, or formed by laying Y over an explanatory variable X, the latter is a categorical variable. X should be stratified if it is a numerical variable, the number of strata L might be 2-10 or more, according to prior knowledge or a classification algorithm.

 

Fig. 1. Schematics of Geographical Detector q-statistic

(Note: h(Y) stands for a partition of Y; h(X) stands for a partition of an explanatory variable X.

In GeoDetector, the terms “stratification”, “classification” and “partition” are equivalent.)

 

q  [0, 1], q = 0 indicates that Y is not spatially stratified heterogeneity, or there is no association between Y and X; q = 1 indicates that Y is perfectly spatially stratified heterogeneity, or Y is completely determined by X; the value of q-statistic indicates the degree of spatial stratified heterogeneity of Y, or how much Y is interpreted by X. Please notice that the q-statistic measures the association between X and Y, both linearly and nonlinearly.

Geographical detector consists of four functions:

(1)    The risk detector indicates potential risk areas Y(X);

(2)    The factor detector q-statistic measures the spatial stratified heterogeneity of a variable Y, or the determinant power of a covariate X of Y;

(3)    The ecological detector identifies the impact differences between two risk factors X1 ~ X2;

(4)    The interaction detector reveals whether the risk factors X1 and X2 (and more X) have an interactive influence on a disease Y.

 

How to Use This Software

The GeoDetector software was developed using Excel. The tool is free of charge, freely downloadable, and easy to use, and was designed without any GIS plug-in components and with “one click” execution. Users can run the following demo, then simply replace the demo data in the GeoDetector Excel software using your own data, click Run and you get results !

As a demo, neural-tube birth defects (NTD) Y and suspected risk factors or their proxies Xs in villages are provided, including data for the health effect layers “NTD prevalence” and environmental factor layers, “elevation”, “soil type”, and “watershed”. Their field names are defined as Y and X1, X2, X3 respectively.

Step 1. Download the software and input your data in Excel

(1) Download the Excel Geodetector software (In the following section “Software and Examples Data Download”), one click to download any one of the three Examples, unzip the downloaded file, you will find an Excel file (this is Geodetector software with an Example dataset!) and double click the Excel file, Fig. 2 and Fig. 4 appear. Fig. 2 gives the format of the input data for the GeoDetector: each row denotes a sample unit (e.g. a village); the 1st column record the disease prevalence (Y); the 2nd and following columns denote partitions of Y or factors X, the latter were partitioned according to the similarity within strata.

(2) Input your data into the Excel Geodetector software in the format of Fig. 2. Then go to Step 2.

 

说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: image004

Fig. 2. Input data in Excel and the execution interface

(Note: Y is numerical; X MUST be categorical, e.g. landuse types. If X is numerical it should be transformed to be categorical, e.g. GDP per capita is stratified into 5 strata)

 

(3) If your data is in GIS format, as Fig. 3, please transform the GIS data into Excel data as Fig. 2.

 

Fig. 3. Data in GIS format

 

Step 2. Run GeoDetector software

Only one operation interface was designed (Fig. 4). The function of the “Read Data” button is to load data; thus, when the button is clicked, all variables are listed in the “variables” list box. Then, disease and partition of Y or environmental factor variables are selected into their corresponding list boxes Y and X on the right of the interface. Finally, GeoDetector is executed by clicking the “Run” button.

 

说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: UI

Fig. 4. User interface for GeoDetector

 

Output of GeoDetector

GeoDetector outputs results from the risk detector, factor detector, ecological detector, and interaction detector in four Excel spreadsheets (Fig. 5).

 

说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: image014

Fig. 5. Interface for GeoDetector results

 

In the “Risk detector” sheet (Fig. 6), result information for each environmental risk factor is presented in two tables. The first table gives the average disease incidence in each stratum of a risk factor, the name of which is written at the top left of the table. The second table gives the statistically significant difference in the average disease incidence between two strata; if there is a significant difference, the corresponding value is “Y”, else it is “N”.

 

说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: image016

Fig. 6. Results of risk detector

 

The Fig. 7 shows the output format of the q values for each environmental risk factor, as given in the “Factor detector” sheet. The table header gives the names of the environmental risk factors, while the associated q values (q1, q2, …, qn) and their corresponding p values are presented in the row below.

 

 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: image018

Fig. 7. Results of factor detector

 

In the “Ecological detector” sheet (Fig. 8), results of the statistically significant differences between two environmental risk factors are presented. If Y(X1) (risk factor names in row) was significantly bigger than Y(X2) (risk factor names in column), the associated value is “Y”, while “N” expresses the opposite meaning.

 

说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: image020

Fig. 8. Results of ecological detector

 

The format of the results for the interaction detector is shown in Fig. 9.Interaction relationships” below the table represent the interaction relationship for the two factors. The relationship is defined in a coordinate axis. It has 5 intervals, including “(-min(q(x), q(y)))”,“(min(q(x), q(y)), max(q(x), q(y)))”, “(max(q(x), q(y)), q(x) + q(y))”,“q(x) + q(y)”,“( q(x) + q(y),+∞)”, and the interaction relationship is determined by the location of q(xÇy) in the 5 intervals (see Table 1).

 

说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: image022

Fig. 9. Results of interaction detector

 

Table 1 Redefined interaction relationships

Graphical representation

Description

Interaction

 

q(X1ÇX2) < Min(q(X1), q(X2))

 

Weaken, nonlinear

Min(q(X1),q(X 2))<q(X1Ç X2)<Max(q(X1)), q(X2))

 

Weaken, uni-

 

q(X1Ç X2) > Max(q(X1), q(X2))

 

Enhance, bi-

 

q(X1Ç X2) = q(X1)+ q(X2)

 

Independent

 

q(X1Ç X2) > q(X1)+ q(X2)

 

Enhance, nonlinear

Legend

说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: image029

 

Download of Geodetector Software and Example Datasets

The software was developed using Excel 2007. It is completely free. (1) You can click any one of the following three links to download the Geodetector software, unzip the file, an Excel file appears, (2) click the Excel file to start the Geodetector, you may try the demo data, and finally (3) input your own data to get your own results.

1: GeoDetector Software with an Example of a Disease Dataset

2: GeoDetector Software with an Example of a Toy Dataset

3: GeoDetector Software with an Example of a NDVI Dataset

 

The Geodetector software can be cited as:

[1] Wang JF, Li XH, Christakos G, Liao YL, Zhang T, Gu X & Zheng XY. 2010. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. International Journal of Geographical Information Science 24(1): 107-127.

[2] Wang JF, Zhang TL, Fu BJ. 2016. A measure of spatial stratified heterogeneity. Ecological Indicators 67(2016): 250-256.

[3] http://www.geodetector.org/

 

Geodetector Bibliography

[1] Wang JF, Li XH, Christakos G, Liao YL, Zhang T, Gu X & Zheng XY. 2010. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. International Journal of Geographical Information Science 24(1): 107-127.

[2] Luo W, Jasiewicz J, Stepinski T, Wang JF, Xu CD, Cang XZ. 2015. Spatial association between dissection density and environmental factors over the entire conterminous United States. Geophysical Research Letters 43(2): 692-700.

[3] 刘彦随,     . 2012. 中国县域城镇化的空间特征与形成机理. 地理学报 67(8):1011-1020.

[4] 王劲峰,徐成东. 2017. 地理探测器:原理与展望. 地理学报 72(1): 116-134.

[5] Lecture ppt in 170624: Geodetector and its Applications in Environmental and Social Sciences(地理探测器及其在环境和社会科学中的应用)

2010

1.         Wang JF, Li XH, Christakos G, Liao YL, Zhang T, Gu X & Zheng XY. 2010. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. International Journal of Geographical Information Science 24(1): 107-127.

2011

2.         Hu Y, Wang JF, Li XH, Ren D, Zhu J. 2011. Geographical detector-based risk assessment of the under-five mortality in the 2008 Wenchuan earthquake, China. PLoS ONE 6(6): e21427.

3.         Zou B, Wilson JG, Zhan FB, Zeng YN, Wu KJ. 2011. Spatial-temporal variations in regional ambient sulfur dioxide concentration and source-contribution analysis: A dispersion modeling approach. Spatial-temporal variations in regional ambient sulfur dioxide concentration and source-contribution analysis: A dispersion modeling approach. Atmospheric Environment 45 (2011) 4977e4985

2012

4.         Wang JF, Hu Y. 2012Environmental health risk detection with GeogDetector. Environmental Modelling & Software 33: 114-115

5.         刘彦随, 杨忍, 2012. 中国县域城镇化的空间特征与形成机理. 地理学报 67(8): 1011-1020.

2013

6.         Cao F, Ge Y, Wang JF. 2013. Optimal discretization for geographical detectors-based risk assessment. GIScience & Remote Sensing 50(1): 78-92.

7.         Li XW, Xie YF, Wang JF, Christakos G, Si JL, Zhao HN, Ding YQ, Li J. 2013. Influence of planting patterns on Fluoroquinolone residues in the soil of an intensive vegetable cultivation area in north China. Science of the Total Environment 458-460: 63-69.

8.         Lee WC. 2013. Assessing causal mechanistic interactions: a peril ratio index of synergy based on multiplicativity. PLoS ONE 8(6): e67424. doi:10.1371/journal.pone.0067424.

9.         Raghavan RK, Brenner KM, Harrington Jr JA, Higgins JJ, Harkin KR. 2013. Spatial scale effects in environmental risk-factor modelling for diseases. Geospatial Health 7(2), 2013, pp. 169-182

10.     Wang JF, Wang Y, Zhang J, Christakos G, Sun JL, Liu X, Lu L, Fu XQ, Shi YQ, Li XM. 2013. Spatiotemporal transmission and determinants of typhoid and paratyphoid fever in Hongta District, China. PLoS Neglected Tropical Diseases 7(3): e2112.

11.     Wang JF, Xu CD, Tong SL, Chen HY, Yang WZ. 2013. Spatial dynamic patterns of hand-foot-mouth disease in the People’s Republic of China. Geospatial Health 7(2): 381-390.

2014

12.     Hu Y, Gao J, Chi M, Luo C, Lynn H, Sun LQ, Tao B, Wang DC, Zhang ZJ, Jiang QW. 2014. Spatio-temporal patterns of schistosomiasis Japonica in lake and marshland areas in China: the effect of snail habitats. American Journal of Tropical Medicine and Hygiene 91(3): 547–554.

13.     Huang JX, Wang JF, Bo YC, Xu CD, Hu MG. 2014. Identification of health risks of Hand, Foot and Mouth Disease in China using the Geographical Detector Technique. International Journal of Environmental Research and Public Health 11: 3407-3423.

14.     Qian Q, Zhao J, Fang LQ, Zhou H, Zhang WJ, Wei L, Yang H, Yin WW, Cao WC, Li Q. 2014. Mapping risk of plague in Qinghai-Tibetan Plateau, China. BMC Infectious Diseases 14:382.

15.     Ren Y, Deng LY, Zuo SD, et al. 2014. Geographical modeling of spatial interaction between human activity and forest connectivity in an urban landscape of southeast China. Landscape Ecology 29(10): 1741-1758.

16.     Wu JL, Zhang CS, Pei LJ, Chen G, Zheng XY. 2014. Association between risk of birth defects occurring level and arsenic concentrations in soils of Lvliang, Shanxi province of China. Environmental Pollution 191: 1-7.

17.     Xu EQ, Zhang HQ. 2014. Characterization and interaction of driving factors in karst rocky desertification: a case study from Changshun, China. Solid Earth 5: 1329-1340.

18.     蔡芳芳,濮励杰. 2014. 南通市城乡建设用地演变时空特征与形成机理. 资源科学 36(4): 0731-0740.

19.         悦,蔡建明,任周鹏,杨振山. 2014. 基于地理探测器的国家级经济技术开发区经济增长率空间分异及影响因素. 地理科学进展 33(5): 657-666.

20.         丹,舒晓波,尧   波,曹安庆. 2014. 江西省县域人均粮食占有量的时空格局演变. 地域研究与开发 33(4): 157-162.

21.     李成悦,王   腾,周   . 2014. 湖北省区域经济格局时空演化及其影响因素分析. 发展研究 2014(1): 47-51.

22.     倪书华. 2014. 空间统计学及其在公共卫生领域中的应用. 汕头大学学报(自然科学版)29(4): 61-67.

23.     通拉嘎,徐新良,付颖,魏凤华. 2014. 地理环境因子对螺情影响的探测分析. 地理科学进展 33(5): 625-635.

24.     魏凤娟,李江风,刘艳中. 2014. 湖北县域土地整治新增耕地的时空特征及其影响因素分析. 农业工程学报 30(14): 267-275.

25.         ,  石培基. 2014. 甘肃省县域城镇化地域差异及形成机理. 干旱区地理 37(4): 838-845.

26.     俞佳根,叶世康. 2014. 空间视角下中国对外直接投资与产业结构升级水平研究. 商业经济研究 34: 127-128.

2015

27.     Chen YH, Ge Y, Heuvelink GBM, Hu JL, Jiang Y. 2015. Hybrid constraints of pure and mixed pixels for soft-then-hard super-resolution mapping with multiple shifted images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8(5): 2040-2052.

28.     Fei XF, Wu JP, Liu QM, Ren YJ, Lou ZH. 2015. Spatiotemporal analysis and risk assessment of typhoid cancer in Hangzhou, China. Stochastic Environmental Research and Risk Analysis. doi:10.1007/s00477-015-1123-4.

29.     Hu Y, Bergquist R, Lynn H, Gao FH, Wang QZ, Zhang SQ, Li R, Sun LQ, Xia CC, Xiong CL, Zhang ZJ, Jiang QW. 2015. Sandwich mapping of schistosomiasis risk in Anhui Province, China. Geospatial Health 10:324.

30.     Hu Y, Li R, Bergquist R, Lynn H, Gao FH, Wang QZ, Zhang AQ, Sun LQ, Zhang ZJ, Jiang QW. 2015. Spatio-temporal transmission and environmental determinants of schistosomiasis Japonica in Anhui Province, China. PLoS Neglected Tropical Diseases 9(2): e0003470. doi:10.1371/journal.pntd.0003470.

31.     Lee WC. 2015. Testing for sufficient-cause gene-environment interactions under the assumptions of independence and Hardy-Weinberg equilibrium. American Journal of Epidemiology 182(1): 9–16.

32.     Shen J, Zhang N, Gexi geduren, He B, Liu CY, Li Y, Zhang HY, Chen XY, Lin H. 2015. Construction of a GeogDetector-based model system to indicate the potential occurrence of grasshoppers in Inner Mongolia steppe habitats. Bulletin of Entomological Research 105: 335-346.

33.     Yang R, Liu YS, Long HL, Qiao LY. 2015. Spatio-temporal characteristics of rural settlements and land use in the Bohai Rim of China. Journal of Geographical Sciences 25(5): 559-572.

34.     Zhu H, Liu JM, Chen C, Lin J, Tao H. 2015. A spatial-temporal analysis of urban recreational business districts: A case study in Beijing, China. Journal of Geographical Sciences 25(12): 1521-1536.

35.     毕硕本,    , 陈昌春, 杨鸿儒,    . 2015. 地理探测器在史前聚落人地关系研究中的应用与分析. 地理科学进展 34(1):118-127.

36.     崔日明,  俞佳根. 2015. 基于空间视角的中国对外直接投资与产业结构升级水平研究. 福建论坛 (人文社会科学版) 2015(2): 26-33.

37.     李一凡,王卷乐,高孟绪. 2015. 自然疫源性疾病地理环境因子探测及风险预测研究综述. 地理科学进展 34(7): 926-935.

38.     徐秋蓉 郑新奇. 2015. 一种基于地理探测器的城镇扩展影响机理分析法. 测绘学报 44 S0: 96-101.

39.        , 刘彦随, 龙花楼, 陈呈奕. 2015. 基于格网的农村居民点用地时空特征及空间指向性的地理要素识别——以环渤海地区为例. 地理研究 34(6): 1077-1087.

40.        佳,刘吉平. 2015. 基于地理探测器的东北地区气温变化影响因素定量分析. 湖北农业科学 54(19): 4682-4687.

41.     湛东升, 张文忠, 余建辉,   , 党云晓. 2015. 基于地理探测器的北京市居民宜居满意度影响机理. 地理科学进展 34(8): 966-975.

42.        , 任志远. 2015. 基于Whittaker滤波的陕西省植被物候特征. 中国沙漠 45(4): 901-906.

43.        , 刘家明,    ,   ,   . 2015. 北京城市休闲商务区的时空分布特征与成因. 地理学报 70(8): 1215-1228.

2016

44.     Chen K, Ni MJ, Cai MG, Wang J, Huang DR, Chen HR, Wang X, Liu MY. 2016. Optimization of a coastal environmental monitoring network based on the Kriging method: a case study of Quanzhou Bay, China. BioMed Research International. http://dx.doi.org/10.1155/2016/7137310.

45.     Du Z, Xu X, Zhang H, Wu Z, Liu Y. 2016. Geographical detector-based identification of the impact of major determinants on aeolian desertification risk. PLoS ONE 11(3): e0151331.

46.     Fan LX, Wu EQ, Liu J, Qu XC, Ning BA, Liu Y. 2016. Distribution Characteristics of Spermophilus dauricus in Manchuria City in China in 2015 through “3S” Technology. Biomedical Environmental Sciences 29(8): 603-608.

47.     Fei XF, Wu JP, Liu QM, Ren YJ, Lou ZH. 2015. Spatiotemporal analysis and risk assessment of thyroid cancer in Hangzhou, China. Stochastic Environmental Research and Risk Assessment 30:2155–2168.

48.     Ju HR, Zhang ZX, Zuo LJ, Wang JF, Zhang SR, Wang X, Zhao XL. 2016. Driving forces and their interactions of built-up land expansion based on the geographical detector – a case study of Beijing, China. International Journal of Geographical Information Science. http://dx.doi.org/10.1080/13658816.2016.1165228.

49.     Li J, Zhu ZW, Dong WJ. A new mean-extreme vector for the trends of temperature and precipitation over China during 1960–2013. Meteorology and Atmospheric Physics. doi:10.1007/s00703-016-0464-y.

50.     Liang P, Yang XP. 2016. Landscape spatial patterns in the Maowusu (Mu Us) Sandy Land, northern China and their impact factors. Catena 145(2016): 321-333.

51.     Liao YL, Zhang Y, He L, Wang JF, Liu X, Zhang NX, Xu B. 2016. Temporal and spatial analysis of neural tube defects and detection of geographical factors in Shanxi Province, China. PLoS ONE 11(4): e0150332. doi:10.1371/journal.pone.0150332.

52.     Lou CR, Liu HY, Li YF, Li YL. 2016. Socioeconomic drivers of PM2.5 in the accumulation phase of air pollution episodes in the Yangtze river delta of China. International Journal of Environmental Research and Public Health 13, 928.

53.     Luo W, Jasiewicz J, Stepinski T, Wang JF, Xu CD, Cang XZ. 2015. Spatial association between dissection density and environmental factors over the entire conterminous United States. Geophysical Research Letters 43(2): 692-700.

54.     Ren J, Gao BB, Fan HM, Zhang ZH, Zhang Y, Wang JF. 2016. Assessment of pollutant mean concentrations in the Yangtze estuary based on MSN theory. Marine Pollution Bulletin 113: 216223.

55.     Ren Y, Deng LY, Zuo SD. Song XD, Liao YL, Xu CD, Chen Q, Hua LZ, Li ZW. 2016. Quantifying the influences of various ecological factors on land surface temperature of urban forests. Environmental Pollution. http://dx.doi.org/10.1016/j.envpol.2016.0 6.0 04.

56.     Tan JT, Zhang PY, Lo KV, Li J, Liu SW. 2016. The urban transition performance of resource-based cities in northeast China. Sustainability 2016, 8, 1022; doi:10.3390/su8101022.

57.     Todorova Y, Lincheva S, Yotinov I, Topalova Y. 2016. Contamination and ecological risk assessment of long-term polluted sediments with heavy metals in small hydropower cascade. Water Resources Management 30: 4171-4184.

58.     Wang JF, Zhang TL, Fu BJ. 2016. A measure of spatial stratified heterogeneity. Ecological Indicators 67(2016): 250-256.

59.     Wang XG, Xi JC, Yang DY, Chen T. 2016. Spatial differentiation of rural touristization and its determinants in China: a geo-detector-based case study of Yesanpo scenic area. Journal of Resources and Ecology 7(6): 464-471.

60.     Wu RN, Zhang JQ, Bao YH, Zhang F. 2016. Geographical detector model for influencing factors of industrial sector carbon dioxide emissions in Inner Mongolia, China. Sustainability 8(2): 149.

61.     Yang R, Xu Q, Long HL. 2016. Spatial distribution characteristics and optimized reconstruction analysis of China ’s rural settlements during the process of rapid urbanization. Journal of Rural Studies. http://dx.doi.org/10.1016/j.jrurstud.2016.05.013.

62.     Zhang N, Jiang YC, Liu CY, Shen J. 2016. A cellular automaton model for grasshopper population dynamics in Inner Mongolia steppe habitats. Ecological Modelling 329(2016): 5-17.

63.     Zhang T, Yin F, Zhou T, Zhang XY & Li XX. 2016. Multivariate time series analysis on the dynamic relationship between Class B notifiable diseases and gross domestic product (GDP) in China. Scientific Reports. DOI:10.1038/s41598-016-0020-5.

64.     Zhao XY, Cai J, Feng DL, Bai YQ, Xu B. 2016. Meteorological influence on the 2009 influenza a (H1N1) pandemic in mainland China. Environmental Earth Sciences 75: 878.

65.     陈昌玲,张全景,吕   晓,黄贤金. 2016. 江苏省耕地占补过程的时空特征及驱动机理. 经济地理 36(4): 155-163.

66.     陈业滨,李卫红,黄玉兴,李晓歌,华家敏. 2016. 广州市登革热时空传播特征及影响因素. 热带地理 36(5): 767-775.

67.     李俊刚,闫庆武,熊集兵,黄园园. 2016. 贵州省煤矿区植被指数变化及其影响因子分析. 生态与农村环境学报 32(3): 374-378.

68.        涛,廖和平,褚远恒,孙 海,李 靖,杨 . 2016. 重庆市农地非农化空间非均衡及形成机理. 自然资源学报 31(11): 1844-1857.

69.     李媛媛,徐成东,肖革新,罗广祥. 2016. 京津唐地区细菌性痢疾社会经济影响时空分析. 地球信息科学学报 18(12): 1615-1623.

70.        颖,王心源,周俊明. 2016. 基于地理探测器的大熊猫生境适宜度评价模型及验证. 地球信息科学学报 18(6): 767-778.

71.     陶海燕,潘中哲,潘茂林,卓  莉,徐  勇,鹿  . 2016. 广州大都市登革热时空传播混合模式. 地理学报 71(9): 1653-1662.

72.        方,牛振国,许盼盼. 2016. 基于景观格局的常熟市地表热环境季节变化特征. 生态学杂志 35(12): 3404-3412.

73.     王录仓,武荣伟,刘海猛,周  鹏,康江江. 2016. 县域尺度下中国人口老龄化的空间格局与区域差异. 地理科学进展 35(8): 921-931.

74.     王录仓,武荣伟. 2016. 中国人口老龄化时空变化及成因探析-基于县域尺度的考察. 中国人口科学 2016(4): 74-84.

75.     王曼曼,吴秀芹,吴  斌,张宇清,董贵华. 2016. 盐池北部风沙区乡村聚落空间格局演变分析. 农业工程学报 32(8): 260-271.

76.     王少剑,王   洋,蔺雪芹,张虹鸥. 2016. 中国县域住宅价格的空间差异特征与影响机制. 地理学报 71(8): 1329-1342.

77.        帅,刘士彬,段建波,戴   . 2016. OSDS注册用户空间分布特征及影响因素分析. 地球信息科学学报 18(10): 1332-1340.

78.        忍,刘彦随,龙花楼,王   洋,张怡筠. 2016. 中国村庄空间分布特征及空间优化重组解析. 地理科学 36(2): 170-179.

79.        磊,武建军,贾瑞静,梁   念,张凤英,倪  永,刘  . 2016. 京津冀PM2.5空分布特征及其污染风险因素. 环境科学研究 2016, 29(4): 483-493.

2017

80.     Adegboye OA, Gayawan E, Hanna F. 2017. Spatial modelling of contribution of individual level risk factors for mortality from Middle East respiratory syndrome coronavirus in the Arabian Peninsula. PLoS ONE 12(7): e0181215.

81.     Benedetti R, Espa G, Taufer E. 2017. Model-based variance estimation in non-measurable spatial designs. Journal of Statistical Planning and Inference 181: 52–61.

82.     Cao Z , Liu T, Li X, Wang J, Lin HL, Chen LL, Wu ZF, Ma WJ. 2017. Individual and interactive effects of socio-ecological factors on dengue fever at fine spatial scale: a geographical detector-based analysis. Int. J. Environ. Res. Public Health 14: 795.

83.     Caulley L, Sawada M, Hinther K, Ko Y-t, Crowther JA, Kontorinis G. 2017. Geographic distribution of vestibular schwannomas in West Scotland between 2000-2015. PLoS ONE 12(5): e0175489.

84.     Chen H, Leinonen I, Marshall B, Taylor AJ. 2017. Conceptual spatial crop models for potato production. Advances in Animal Biosciences: Precision Agriculture (ECPA) 2017. 8(2): 678–683.

85.     Cheng SF, Lu F. 2017. A two-step method for missing spatio-temporal data reconstruction. ISRS International Journal of Geo-Information 6: 187.

86.     Dai YH, Zhou WX. 2017. Temporal and spatial correlation patterns of air pollutants in Chinese cities. PLoS ONE 12(8): e0182724.

87.     Du ZQ, Zhang XY, Xu XM, Zhang H, Wu ZT, Pang J. 2017. Quantifying influences of physiographic factors on temperate dryland vegetation, Northwest China. Scientific Reports 7: 40092.

88.     Fang YB, Wang LM, Ren ZP, Yang Y, Mou CF, Qu QS. 2017. Spatial heterogeneity of energy-related CO2 emission growth rates around the world and their determinants during 1990–2014. Energies 2017, 10: 367.

89.     Gao BB, Lu AX, Pan YC, Huo LL, Gao YB, Li XL, Li SH, Chen ZY. 2017. Additional sampling layout optimization method for environmental quality grade classifications of farmland soil. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. DOI: 10.1109/JSTARS.2017.2753467.

90.     Gao H, Tang YW, Jiang LH, Li H, Ding HF. 2017. A novel unsupervised segmentation quality evaluation method for remote sensing images. Sensors 17: 2427.

91.     Ge EJ, Zhang RJ, Li DK, Wei XL, Wang XM, Lai PC. 2017. Estimating risks of inapparent avian exposure for human infection: avian influenza virus A (H7N9) in Zhejiang province, China. Scientific Reports 7: 40016.

92.     Golkar F, Sabziparvar AA, Khanbilvardi R, Nazemosadat JM, Zand- Parsa S, Rezaei Y. 2017. Estimation of instantaneous air temperature using remote sensing data. International Journal of Remote Sensing 39(1): 258–275.

93.     Goudzrzi S, Jozi SA, Monavari M, Karbasi A, Hasani H. 2017. Assessment of groundwater vulnerability to nitrate pollution caused by agriculture practices. Water Quality Research Journal. doi: 10.2166/wqrjc.2017.031.

94.     Gu H, Fan WJ, Liu K, Qin SW, Li XY, Jiang JM, Chen EF, Zhou YB, Jiang QW. 2017. Spatio-temporal variations of typhoid and paratyphoid fevers in Zhejiang Province, China from 2005 to 2015. Scientific Reports 7: 5780.

95.     Hellwig E, Hijmans RJ. 2017. Spatio-temporal variation in childhood growth in Nigeria: a comparison of aggregation and interpolation, International Journal of Digital Earth. DOI: 10.1080/17538947.2017.1330905.

96.     Hu Y, Xia CC, Li SZ, Ward MP, Luo C, Gao FH, Wang QZ, Zhang SQ, Zhang ZJ. 2017. Assessing environmental factors associated with regional schistosomiasis prevalence in Anhui Province, Peoples’ Republic of China using a geographical detector method. Infectious Diseases of Poverty 6: 87.

97.     Li FZ, Zhang F, Li X, Wang P, Liang JH, Mei YT, Cheng WW, Qian Y. 2017. Spatiotemporal patterns of the use of urban green spaces and external factors contributing to their use in central Beijing. International Journal of Environmental Research and Public Health 14: 237.

98.     Li J, Zhu ZW, Dong WJ. 2017. A new mean-extreme vector for the trends of temperature and precipitation over China during 1960–2013. Meteorology Atmospheric Physics 129: 273–282.

99.     Liao YL, Xu B, Wang JF, Liu XC. 2017. A new method for assessing the risk of infectious disease outbreak. Scientific Reports 7: 40084. DOI: 10.1038/srep40084.

100.  Liao YL, Wang JF, Du W, Gao BB, Liu X, Chen G, Song XM, Zheng XY. 2017. Using spatial analysis to understand the spatial heterogeneity of disability employment in China. Transactions in GIS 21(4): 647–660.

101.  Liu YS, Yuan XM, Guo L, Huang YH, Zhang XL. 2017. Driving force analysis of the temporal and spatial distribution of flash floods in Sichuan province. Sustainability 9: 1527; doi: 10.3390/su9091527.

102.  Luo W, Liu CC. 2017. Innovative landslide susceptibility mapping supported by geomorphon and geographical detector methods. Landslides. DOI 10.1007/s10346-017-0893-9.

103.  Luo W, Hartman J, Wang F, Huang P, Sysamouth. 2017. GIS in comparative-historical linguistics research: Tai languages. Comprehensive Geographic Information Systems. 2016: 157-180. DOI: 10.1016/B978-0-12-409548-9.09663-9.

104.  Onozuka D, Hagihara A. 2017. Extreme temperature and out-of-hospital cardiac arrest in Japan: A nationwide, retrospective, observational study. Science of the Total Environment 575(2017): 258-264.

105.  Qiao PW, Lei M, Guo GH, Yang J, Zhou XY, Chen TB. 2017. Quantitative analysis of the factors influencing soil heavy metal lateral migration in rainfalls based on geographical detector software: a case study in Huanjiang County, China. Sustainability 9: 1227

106.  Qiu BW, Lu DF, Tang ZH, Song DJ, Zeng YH, Wang ZZ, Chen CC, Chen N, Huang HY, Xu WM. 2017. Mapping cropping intensity trends in China during 1982-2013. Applied Geography 79: 212-222.

107.  Qu YB, Jiang GH, Yang YT, Zheng QY, Li YL, Ma WQ. 2017. Multi-scale analysis on spatial morphology differentiation and formation mechanism of rural residential land: A case study in Shandong Province, China. Habitat International 71(2018): 135146.

108.  Penman BS, Gupta S, Shanks GD. 2017. Rapid mortality transition of Pacific Islands in the 19th century. Epidemiology and Infection 145: 1–11.

109.  Safa M, Soltani-Mohammadi. S. 2017. Distance function modeling in optimally locating additional boreholes. Spatial Statistics 23: 17–35.

110.  Shrestha A, Luo W. 2017. An assessment of groundwater contamination in Central Valley aquifer, California using geodetector method. Annals of GIS 23: 149-166.

111.  Shrestha A, Luo W. 2017. Analysis of groundwater nitrate contamination in the central valley: comparison of the Geodetector Method, Principal Component Analysis and Geographically Weighted Regression. ISPRS International Journal of Geo-Information 6: 297.

112.  Song YZ, Wang XY, Tan Y, Wu P, Sutrisna M, Cheng JCP, Hampson K. 2017. Trends and opportunities of BIM-GIS integration in the architecture, engineering and construction industry: a review from a spatio-temporal statistical perspective. ISPRS International Journal of Geo-Information 6: 397.

113.  Strand G. 2017. A study of variance estimation methods for systematic spatial sampling. Spatial Statistics 21: 226240.

114.  Tan JT, Lo K, Qiu FD, Liu WX, Li J, Zhang PY. 2017. Regional economic resilience: resistance and recoverability of resource-based cities during economic crises in northeast China. Sustainability 9: 2136.

115.  Tian L, Li YF, Yan YQ, Wang BY. 2017. Measuring urban sprawl and exploring the role planning plays: A Shanghai case study. Land Use Policy 67: 426-435.

116.  Wang JJ, Ma JJ, Liu JQ, Zeng D DJ, Song C, Cao ZD. 2017. Prevalence and risk factors of comorbidities among hypertensive patients in China. International Journal of Medical Sciences 14(3): 201-212.

117.  Wang LL, Lin YW, Wang XF, Xiao N, Xu YD, Li HD, Xu QS.. 2017. A selective review and comparison for interval variable selection in spectroscopic modeling. Chemometrics and Intelligent Laboratory Systems. doi: 10.1016/j.chemolab.2017.11.008.

118.  Wang Y, Wang SJ, Li GD, Zhang HG, Jin LX, Su YX, Wu KM. 2017. Identifying the determinants of housing prices in China using spatial regression and the geographical detector technique. Applied Geography 79 (2017): 26e36.

119.  Wang ZS, Yue Y, Li QQ, Nie K, Tu W, Liang S. 2017. Analyzing risk factors for fatality in urban traffic Crashes: a case study of Wuhan, China. Sustainability 2017, 9, 897; doi:10.3390/su9060897.

120.  Westerholt R, Resch B, Mocnik FB, Hoffmeister D. 2017. A statistical test on the local effects of spatially structured variance. International Journal of Geographical Information Science. https://doi.org/10.1080/13658816.2017.1402914.

121.  Wu C, Ye XY, Du QY, Luo P. 2017. Spatial effects of accessibility to parks on housing prices in Shenzhen, China. Habitat International 63 (2017): 45e54.

122.  Xiao QY, Liu HJ, Feldman MW. 2017. Tracking and predicting hand, foot, and mouth disease (HFMD) epidemics in China by Baidu queries. Epidemiology and Infection 145(8):1699-1707.

123.  Xu CD. 2017. Spatio-temporal pattern and risk factor analysis of hand, foot and mouth disease associated with under-five morbidity in the Beijing–Tianjin–Hebei region of China. International Journal of Environmental Research and Public Health 14: 416.

124.  Xu CD, Li YY, Wang JF, Xiao GX. 2017. Spatial-temporal detection of risk factors for bacillary dysentery in Beijing, Tianjin and Hebei, China. BMC Public Health 17: 743.

125.  Xu Q, Dong YX, Yang R. 2017. Influence of different geographical factors on carbon sink functions in the Pearl River Delta. Scientific Reports 7: 110.

126.  Yang SF, Hu SG, Li WD, Zhang CR, Torres JA. Spatiotemporal effects of main impact factors on residential land price in major cities of China. Sustainability 9: 2050.

127.  Yang Y, Wang LM, Cao Z, Mou CF, Shen L, Zhao JN, Fang YB. 2017. CO2 emissions from cement industry in China: a bottom-up estimation from factory to regional and national levels. Journal of Geographical Sciences 2017, 27(6): 711-730.

128.  Ye H, Hu XY, Qun R, Lin T, Li XH, et al. 2017. Effect of urban micro-climatic regulation ability on public building energy usage carbon emission. Energy and Buildings. http://dx.doi.org/10.1016/j.enbuild.2017.08.047.

129.  Ye H, Sun CG, Wang K, Zhang GQ, Lin T, Yan H. 2017. The role of urban function on road soil respiration responses. Ecological Indicators 85: 271275.

130.  Yuan XM, Liu YS, Huang YH, Tian FC. 2017. An approach to quality validation of large-scale data from the Chinese Flash Flood Survey and Evaluation (CFFSE). Natural Hazards 89(2): 1-12.

131.  Zhan DS, Kwan MP, Zhang WZ, Wang SJ, Yu JH. 2017. Spatiotemporal variations and driving factors of air pollution in China. International Journal of Environmental Research and Public Health 14: 1538.

132.  Zhang KS, Sun D, Shen SW, Zhu Y. 2017. Analyzing spatiotemporal congestion pattern on urban roads based on taxi GPS data. Journal of Transport and Land Use 10(1): 675-694.

133.  Zhao YJ, Deng QY, Lin Q, Cai CT. 2017. Quantitative analysis of the impacts of terrestrial environmental factors on precipitation variation over the Beibu Gulf Economic Zone in Coastal Southwest China. Scientific Reports 7: 44412.

134.  Zhou CS, Chen J, Wang SJ. 2018. Examining the effects of socioeconomic development on fine particulate matter (PM2.5) in China's cities using spatial regression and the geographical detector technique. Science of the Total Environment 619–620: 436–445.

135.  Zou B, Jiang XL, Duan XL, Zhao XG, Zhang J, Tang JW, Sun GQ. 2017. An integrated H-G scheme identifying areas for soil remediation and primary heavy metal contributors: a risk perspective. Scientific Reports 7: 341.

136.  毕硕本,凌德泉,计    晗,沈    香,王    . 2017. 郑洛地区史前聚落遗址人居环境宜居度指数模糊综合评价. 地理科学 37(6): 904-911.

137.      超,马春光. 2017. 中国大宗商品期货交割库空间布局及影响因素. 地理科学 37(1): 125-129.

138.      . 2017. 湖北省公路交通可达性空间格局演化及影响因素. 城市建筑 2017(8): 318-321.

139.  蔡 进,廖和平,李 靖. 2017. 重庆市转户进城农户城市融入水平及影响因素研究. 西南大学学报(自然科学版)39(4): 108-114.

140.      愫,陈报章. 2017. 城市医疗设施空间分布合理性评估. 地球信息科学学报 19(2): 185-196.

141.  董玉祥,徐   茜,杨   忍,徐成东,王钰莹. 2017. 基于地理探测器的中国陆地热带北界探讨. 地理学报 72(1): 135-147.

142.     坤,童艳丽. 2017. “四化”对水资源绿色效率的探测分析. 国土与自然资源研究 2017(4): 43-44.

143.     锐,李    新,马明国,葛   咏,刘绍民,肖   青,闻建光,赵   凯,辛晓平,冉有华,柳钦火,张仁华.2017. 陆地定量遥感产品的真实性检验关键技术与试验验证地球科学进展32(6): 630-642.

144.  李方正,戴超兰,姚  . 2017. 北京市中心城社区公园使用时空差异及成因分析—基于58个公园的实证研究. 北京林业大学学报 39(9): 91-101.

145.  李华威,万    . 2017. 小流域山洪灾害危险性分析之降雨指标选取的初步研究. 地球信息科学学报 19(3): 425-435.

146.  李佳洺,陆大道,徐成东,李  扬,陈明星. 2017. 胡焕庸线两侧人口的空间分异性及其变化. 地理学报 72(1): 148-160.

147.      尧,张    . 2017. 亚洲小车蝗的多尺度分布格局. 中国科学院大学学报 34(3): 329-341.

148.      颖,冯    玉,彭    飞,陈树登.2017. 基于地理探测器的天津市生态用地格局演变经济地理. http://kns.cnki.net/kcms/detail/43.1126.K.20171206.1019.016.html.

149.      雨,韩    平,任    东,罗    娜,王纪华. 2017. 基于地理探测器的农田土壤重金属影响因子分析. 中国农业科学 50(21): 4138-4148.

150.  刘吉平,马长迪,刘 雁,盛连喜. 2017. 基于地理探测器的沼泽湿地变化驱动因子定量分析——以小三江平原为例. 东北师大学报(自然科学版)49(2): 127-135.

151.  刘鹏华,姚   尧,梁   昊,梁兆堂,张亚涛,王昊松. 2017. 耦合卡尔曼滤波和多层次聚类的中国PM2.5时空分布分析. 地球信息科学学报 19(4): 475-485.

152.  刘彦随,李进涛. 2017. 中国县域农村贫困化分异机制的地理探测与优化决策. 地理学报 72(1): 161-173.

153.      晨,蓝修婷,孙   . 2017. 理探测器方法下北京市人口空间格局变化与自然因素的关系研究. 自然资源学报 32(8): 1385-1397.

154.  史婷婷,杨晓梅,蓝荣钦. 2017. 朝鲜人口统计数据空间化模拟及影响因子分析. 测绘科学技术学报 34(1): 79-84.

155.      涛,程    艺,刘卫东,刘    . 2017. 中国边境地缘经济的空间差异及影响机制. 地理学报 72(10): 1731-1745.

156.  田俊峰,刘艳军,付占辉,王彬燕. 2017. 哈大巨型城市带要素集聚分异与空间极化格局. 人文地理 32(3): 117-123.

157.      , 李武艳, 朱从谋. 2017. 不同尺度城镇化水平特征差异性研究. 特区经济 347(11): 68-72.

158.  王录仓,武荣伟,李    . 2017. 中国城市群人口老龄化时空格局. 地理学报 72(6): 1001-1016.

159.  王琛智,张   朝,周脉耕,殷   鹏,陶福禄,金月雄. 2017. 低温对中国居民健康影响的空间差异性分析. 地球信息科学学报 19(3): 336-345

160.  王劲峰,徐成东. 2017. 地理探测器:原理与展望. 地理学报 72(1): 116-134.

161.  王楠楠,李俊明,段琳琼,陈常优,郜燕芳,樊鹏飞. 2017. 长三角和中原城市群城市扩张时空特征及驱动力比较研究. 河南大学学报(自然科学版)47(6): 681-692.

162.  王向楠. 2017. 财产保险公司的地理扩张与利润. 地理学报 72(8): 1347-1360.

163.      浩,苑韶峰,杨丽霞. 2017. 浙江县域土地经济效益空间格局演变及驱动因素研究. 长江流域资源与环境 26(3): 341-349.

164.  徐维祥,杨    蕾,杨沛舟,黄明均,刘程军. 2017. 泛长三角生态创新的时空格局演变及形成机制. 浙江工业大学学报(社会科学版)16(2): 147-154.

165.      晶,胡茂桂,钟少颖,方    . 2017. 全国γ辐射剂量率空间分布差异影响机理研究. 地球信息科学学报 19(5): 625-634.

166.  翟召坤,卢善龙,王    萍,马丽娟,李    多,任玉玉,武胜利. 2017. 基于NSIDC海冰产品的FY北极海冰数据集优化. 地球信息科学学报 19(2): 143-151.

167.  张少尧,宋雪茜,邓    . 2017. 空间功能视角下的公共服务对房价的影响: 以成都市为例. 地理科学进展 36(8): 995-1005.

168.  赵映慧,郭晶鹏,毛克彪,项亚楠,李怡函,韩家琪,吴   . 2017. 1949-2015 年中国典型自然灾害及粮食灾损特征. 地理学报 72(7): 1261-1276.

169.  湛东升,张文忠,党云晓,戚    伟,刘倩倩. 2017. 中国流动人口的城市宜居性感知及其对定居意愿的影响. 地理科学进展 36(10): 1250-1259.

170.      亮,周成虎,杨    帆,王    波,孙东琪. 2017. 2000-2011年中国PM2.5时空演化特征及驱动因素解析. 地理学报 72(11): 2079-2092.

171.      湘,袁    文,李汉青,马明清,袁    . 2017. 北京市二手房价格时空演变特征. 地球信息科学学报 19(8): 1049-1059.

172.  邹 滨,许 珊,张 静. 2017. 土地利用视角空气污染空间分异的地理分析. 武汉大学学报 信息科学版 42(2): 216-222.

 

Developers and contact information

Email: xucd@Lreis.ac.cn (Chengdong Xu), wangjf@Lreis.ac.cn (Jinfeng Wang)

Address: Room 2305, A11 Datun Road, Beijing, China

 

Acknowledgement: NSFC, MOST

 

Copyright: 201 Spatial Analysis Group, IGSNRR, CAS.

 

说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: 说明: Locations of visitors to this page